
RingHopper -
Hopping from

User-space
to God Mode

2023

grasshopper photo by Eka P. Amdela on Unsplash

https://unsplash.com/@amdela?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

Notices and Disclaimers

• No product can be absolutely secure.

• Intel technologies may require enabled hardware, software or
service activation.

• Results have been estimated or simulated.

• Your costs and results may vary.

• © Intel Corporation. Intel, the Intel logo, and other Intel marks are
trademarks of Intel Corporation or its subsidiaries. Other names
and brands may be claimed as the property of others.

Overview

The story of how we obtained write primitives,

hopped into privileged mode,

and acquired total* world domination 😎

User-mode

[Ring 3]

Kernel

[Ring 0]

Privilege Rings

User-mode

[Ring 3]

Kernel [Ring 0]

Hypervisor

[Ring -1]

SMM
[Ring -2]

Privilege Rings
Why so negative?

System Management Mode
How it Started

• Processor operating mode

• Provides low-level system functionality:
• Power management

• System hardware control

• Proprietary OEM designed code

• Transparent to the Hypervisor/OS

System Management Mode
How it’s Going

• Wide range of functionalities:
• Handle USB events at boot time and run time

• System Management BIOS

• Many more…

• Well-guarded source: http://gunshowcomic.com/648

http://gunshowcomic.com/648

Invoking SMM functions from ring 0

Kernel [Ring 0] SMM [Ring -2]
System

Management

Interrupt

SMI

handler

RAM

SMRAM

System Management RAM

SMMKernel

User-
space
apps

Kernel
modules

Hypervisor

VMs

Communication with SMM
Kernel [Ring 0] SMM [Ring -2]

SMRAMRAM

buffer

System

Management

Interrupt
CPU state Save State

rax

rbx

rcx

⁞

SMM is where you
want to be:

• Brick platform

• Steal sensitive information

• Evade different OS security
mechanisms

• Install a BootKit

• Disable secure boot

• etc.

Photo by Matthew Sleeper on Unsplash

Photo by SIMON LEE on Unsplash

https://unsplash.com/@mjsleeper?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/motivation?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/@simonppt?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/photos/N4RYO1198KM?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

Privilege
escalation

User-mode

[Ring 3]

Kernel [Ring 0]

Hypervisor

[Ring -1]

SMM

[Ring -2]

Our target

Intel® NUC (Next Unit of Computing)

if (!Validate(outputBuffer)) {
return ACCESS_DENIED;

}
// [...]
*(outputBuffer) = 0xc0ffee;

Time Of Check Time Of Use Vulnerability

check

use
modify the value of

outputBuffer

TOCTOU
Vulnerability
Toy Example

RAM

inputBuffer

0xc0ffee

SMRAM

0xc0ffeeoutputBuffer

&outputBuffer&SMRAM

TOCTOU Vulnerability
Toy Example

Reading value of RBX from

the Save State

Checking the buffer is not

in SMRAM

Assigning a value to the

buffer

Modifying *inputBuffer

between the check and use

EFI_STATUS EFIAPI CoffeeSmiHandler(EFI_HANDLE DispatchHandle, CONST VOID
*Context, VOID *CommBuffer, UINTN *CommBufferSize) {

UINT32* inputBuffer = NULL;
// [...]
mSmmCpu->ReadSaveState(mSmmCpu, sizeof(UINT32),

EFI_SMM_SAVE_STATE_REGISTER_RBX,
gSmst->CurrentlyExecutingCpu, inputBuffer);

// [...]
if (!SmmIsBufferOutsideSmmValid) {

DEBUG ((EFI_D_INFO, "Missing validation protocol\n"));
return EFI_ERROR;

}
// [...]
if (!SmmIsBufferOutsideSmmValid(*inputBuffer, 0x4)){

return EFI_ACCESS_DENIED;
}
**inputBuffer = 0xc0ffee;
// [...]

}

check

use

(*inputBuffer == &outputBuffer)

TOCTOU Classic Exploitation

Validate

Use

Corrupt

Corrupt

Corrupt

timeline

DMA is the way of peripheral devices to access RAM

directly, without the CPU

DMA

DMA via PCILeech

awesome tool by Ulf Frisk - https://github.com/ufrisk/pcileech

https://github.com/ufrisk/pcileech

Physical to remote

• Utilized the HDD to perform DMA

• Generated DMA transactions based on work
by Rafal Wojtczuk in Subverting the Xen
Hypervisor

Photo by Frank R on Unsplash

https://www.blackhat.com/presentations/bh-usa-08/Wojtczuk/BH_US_08_Wojtczuk_Subverting_the_Xen_Hypervisor.pdf
https://www.blackhat.com/presentations/bh-usa-08/Wojtczuk/BH_US_08_Wojtczuk_Subverting_the_Xen_Hypervisor.pdf
https://unsplash.com/@frank041985?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/hard-drive?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

TOCTOU SMM Exploitation

timeline

Read request
⁞

Processing

Request

⁞

TOCTOU SMM Exploitation

timeline

Read request
⁞

Processing

Request

⁞

Trigger SMI

Validate

Use

hook

Return file

Photo by Victor Serban on Unsplash

https://unsplash.com/es/@victorserban?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/photos/ZFN6UNWhstI?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

What is SMM and how to work with it

Turning TOCTOU issues into write primitive to the

SMRAM

Manipulating DMA transactions

Executing code in SMM

Recap

What is SMM and how to work with it

Turning TOCTOU issues into write primitive to the

SMRAM

Manipulating DMA transactions

Executing code in SMM

Recap

SmbiosDmiEdit DXE driver

Code Execution
Initial capabilities

**(input_buffer + 2) = 0x28;
**(input_buffer + 6) = sub_2428(qword_6D58, v3);
**(input_buffer + 0xa) = sub_248C(qword_6D58);
**(input_buffer + 0xe) = qword_6C08 ? qword_6C08 : qword_6D58;
**(input_buffer + 0x12) = word_6D68;

Write-primitives from the SmbiosDmiEdit DXE driver

Code Execution
Initial capabilities

Code Execution
Classic Approach

Find an executable memory region

Forge arbitrary payload

Get unrestricted memory access

Code is RO, data is NX

Weak write primitives

Static + RO page table

Code Execution
Challenges

A classic approach might not work

=> Let’s try to leverage SMM internal mechanisms to our
advantage

source: https://www.mememaker.net/meme/such-challenge-very-hard

https://www.mememaker.net/meme/such-challenge-very-hard

Code Execution

SMRAM

Code Execution
SMBASE

SMBASE of core 0

SMBASE of core 1

SMBASE of core 2

⁞

SMRAM

Code Execution
SMBASE

SMBASE of core 0

SMBASE of core 1

SMBASE of core 2

⁞

SMBASE + 0xFFFF

SMBASE

SMBASE + 0x8000 + 0x7EF8

Save State Area

SMBASE value

SMI Handler

Entry Point

First code executed upon

entering SMM

Code Execution
SMBASE Relocation

SMBASE + 0xFFFF

SMBASE

SMBASE + 0x8000 + 0x7EF8

Save State Area

SMBASE value

SMI Handler

Entry Point

SMRAM

Code Execution
SMBASE Relocation Attack

SMBASE + 0xFFFF

SMBASE

SMBASE + 0x8000 + 0x7EF8

Save State Area

SMBASE value

SMI Handler

Entry Point

User controlled

memory

non-SMRAM SMRAM

SMI Handler

Entry Point

Code Execution
SMM “SMEP”

Code Execution
SMM “SMEP”

… what if we cut the power to the CPU?

SMM_FEATURE_CONTROL cannot be modified until reboot…

S3 sleep state

ZZZ

MSRs

Code Execution
S3 sleep state

Normal
execution

Going into
S3

Back from
S3

Initialization
code

SMM_Code_Chk_En state

set

set

clear

set
Initialization

code

VOID EFIAPI SmmCpuFeaturesSetSmmRegister (
IN UINTN CpuIndex,
IN SMM_REG_NAME RegName,
IN UINT64 Value
)

{
if (mSmmFeatureControlSupported && (RegName == SmmRegFeatureControl)) {
AsmWriteMsr64 (SMM_FEATURES_LIB_SMM_FEATURE_CONTROL, Value);

}
}

Code Execution
SMM “SMEP” + S3

Code Execution in SMM – full recipe

1. Set the value of mSmmFeatureControlSupported to 0

2. Go into S3 sleep mode

3. Return from S3

4. Create a fake SMI Handler Entry Point

5. Modify the SMBASE field in the save state to point to that memory

6. Trigger an SMI

• SMI Handler Entry Point:

• Starts running in real mode

• Initializes the page table (setting cr3)

• We execute our own SMI Handler Entry Point

=> We’re accessible to all DRAM w/o page-table restrictions

Defeating RO pages

Code Execution in SMM
Mitigations

https://edk2-docs.gitbook.io/a-tour-beyond-bios-mitigate-buffer-overflow-in-ue/summary/policy_control

RO Memory

https://edk2-docs.gitbook.io/a-tour-beyond-bios-mitigate-buffer-overflow-in-ue/summary/policy_control

Code Execution in SMM
Mitigations

https://edk2-docs.gitbook.io/a-tour-beyond-bios-mitigate-buffer-overflow-in-ue/summary/policy_control

Heap Guard

NX/RO Memory

SMM Static Paging

https://edk2-docs.gitbook.io/a-tour-beyond-bios-mitigate-buffer-overflow-in-ue/summary/policy_control

Code Execution in SMM
Mitigations

We don’t mind these mitigations:

https://edk2-docs.gitbook.io/a-tour-beyond-bios-mitigate-buffer-overflow-in-ue/summary/policy_control

Stack Guard

NULL pointer detection

Heap Guard

Memory Profile

NX Stack

NX/RO Memory

Image Protection

SMM Static Paging

Read-only Page Table

https://edk2-docs.gitbook.io/a-tour-beyond-bios-mitigate-buffer-overflow-in-ue/summary/policy_control

Photo by Andrey Tikhonovskiy on Unsplash

https://unsplash.com/@anritikhon?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/praying-mantis?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

The demo
Gods have
forsaken us

photo by Sivani Bandaru on Unsplash

https://unsplash.com/@agni11?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/photos/bczrpU9n8f4?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

The FW Ecosystem

… IBVs

OEMs…

> 200 million devices manufactured in 2020 only

• Generate DMA transactions

• Trigger SMIs

• Write to specific physical
memory

Ring 3 Ring 0 Ring -2

Exploitation from ring 3
Generating DMA transactions

timeline

Read File
⁞

Processing

Request

⁞

Trigger SMI

Validate

Use

hook

Return file

• Generate DMA transactions

• Trigger SMIs

• Write to specific physical
memory

Ring 3 Ring 0 Ring -2

Exploitation from ring 3

https://twitter.com/matrosov/status/1045922881677352961

Exploitation from ring 3
Triggering SMI

AMI provides:

• A Linux driver (amifldrv_mod)

• A signed Windows driver (amifldrv64.sys)

Both drivers expose APIs for triggering any SMI

• Generate DMA transactions

• Trigger SMIs

• Write to specific physical
memory

Ring 3 Ring 0 Ring -2

Exploitation from ring 3
Writing to physical memory

Communication with SMM done via special buffer in non-SMRAM memory

The drivers create a physical virtual mapping of this buffer

Kernel [Ring 0] SMM [Ring -2]

SMRAMRAM

rbx

⁞

Buffer(PA)

User-space [Ring 3]

buffer(VA)

Exploitation from ring 3
Code execution

1. Map a non-SMRAM buffer to a user-space address

2. Perform simultaneously in a loop:

Trigger SMI

with provided buffer

as input

Read “malicious” file

into buffer

• Generate DMA transactions

• Trigger SMIs

• Write to specific physical
memory

Ring 3 Ring 0 Ring -2

Timeline

reported
internally

(Jun 1st ’21)

embargo
expired

(Nov 8th ’22)

BlueHatIL😎

(March 29th ’23)

• UEFI threats are real

• SMI handlers compose a fruitful attack surface

• UEFI research has an interesting future

Key Takeaways

• UEFI threats are real

• SMI handlers compose a fruitful attack surface

• UEFI research has an interesting future – stay tuned

Key Takeaways

grasshopper photo by Eka P. Amdela on Unsplash

https://unsplash.com/@amdela?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

	Slide 1
	Slide 2: Notices and Disclaimers
	Slide 3: Overview
	Slide 4
	Slide 5
	Slide 6: System Management Mode How it Started
	Slide 7: System Management Mode How it’s Going
	Slide 8: Invoking SMM functions from ring 0
	Slide 9: System Management RAM
	Slide 10: Communication with SMM
	Slide 11: SMM is where you want to be:
	Slide 12: Privilege escalation
	Slide 13: Our target
	Slide 14: Time Of Check Time Of Use Vulnerability
	Slide 15: TOCTOU Vulnerability Toy Example
	Slide 16: TOCTOU Vulnerability Toy Example
	Slide 17: TOCTOU Classic Exploitation
	Slide 18
	Slide 19: DMA via PCILeech
	Slide 20: Physical to remote
	Slide 21: TOCTOU SMM Exploitation
	Slide 22: TOCTOU SMM Exploitation
	Slide 23
	Slide 24: Recap
	Slide 25: Recap
	Slide 26
	Slide 27
	Slide 28: Code Execution Classic Approach
	Slide 29: Code Execution Challenges
	Slide 30: Code Execution
	Slide 31: Code Execution SMBASE
	Slide 32: Code Execution SMBASE
	Slide 33: Code Execution SMBASE Relocation
	Slide 34: Code Execution SMBASE Relocation Attack
	Slide 35: Code Execution SMM “SMEP”
	Slide 36: Code Execution SMM “SMEP”
	Slide 37: S3 sleep state
	Slide 38: Code Execution S3 sleep state
	Slide 39: Code Execution SMM “SMEP” + S3
	Slide 40: Code Execution in SMM – full recipe
	Slide 41: Defeating RO pages
	Slide 42: Code Execution in SMM Mitigations
	Slide 43: Code Execution in SMM Mitigations
	Slide 44: Code Execution in SMM Mitigations
	Slide 45
	Slide 46: The demo Gods have forsaken us
	Slide 47: The FW Ecosystem
	Slide 48
	Slide 49: Exploitation from ring 3 Generating DMA transactions
	Slide 50
	Slide 51: Exploitation from ring 3
	Slide 52: Exploitation from ring 3 Triggering SMI
	Slide 53
	Slide 54: Exploitation from ring 3 Writing to physical memory
	Slide 55: Exploitation from ring 3 Code execution
	Slide 56
	Slide 57: Timeline
	Slide 58: Key Takeaways
	Slide 59: Key Takeaways
	Slide 60

