
Sharon Brizinov, Vera

Mens @ Claroty Team82

Breaking OPC-UA to

Get Some $$$ at Pwn2Own
(and Secure the Global Supply Chain

Along the Way)

whoami
Sharon Brizinov

● @ T82, Director of Claroty Research

● Pwn2Own, DEFCON blackbadge

Vera Mens

● @ T82, Vulnerability Researcher

● Pwn2Own, no blackbadge (yet 😉)

Special thanks to Uri Katz

Pwn2Own ICS - 2022
● Hacking competition by ZDI

to exploit widely used

software and products

● Theme - Industrial Control

Systems with heavy focus on

OPC-UA Protocol

Exploitation

Pwn2Own ICS - Categories
● Control Servers

● OPC UA Servers

● Gateways

● Human Machine

Interface (HMI)

● Engineering Workstation

Software (EWS)

Pwn2Own ICS - Categories
● Control Servers

● OPC UA Servers

● Gateways

● Human Machine

Interface (HMI)

● Engineering Workstation

Software (EWS)

OPC-UA

Attack Vector

What is OPC-UA ?

What is OPC-UA ?

Open Platform Communications

- Unified Architecture
● Protocol for data exchange between industrial

automation systems and enterprise IT systems

● Enables interoperability and smooth integration

between industrial systems

● TL;DR - popular protocol in industrial networks to send

data. For example - measure water level in a tank

Example Please

Water Tank

Water Tank

Actuators

Fill Valve

Discharge

Valve

Water Tank

Actuators

Fill Valve

Discharge

Valve

Sensors

Flow Meter

Level Meter

Water Tank

Actuators

Fill Valve

Discharge

Valve

Sensors

Flow Meter

Level Meter

WATER_LEVEL

Simple PLC Logic

1. Open Fill Valve

2. If WATER_LEVEL >= 51:

a. Close Fill Valve

Tags

WATER_LEVEL

FLOW_LEVEL

IS_VALVE_OPEN

TANK_ID

Water Tank

PLC

Water Tank
HMI

PLC

Water Tank
HMI

PLC

What's the Risk?
- Denial of Service

What's the Risk?
- Denial of Service
- Information Leak

Steal Process Logic

What's the Risk?
- Denial of Service

- Information Leak

- Remote Code Execution

OK, But How the

Protocol Works?

Reading the OPC-UA

Bible (specifications)

OPC-UA Specifications

- Concepts

- Services

- Information Model

- Security

- Alarms and Conditions

- …

https://reference.opcfoundation.org/

https://reference.opcfoundation.org/

OPC-UA Crash

Course

OPC-UA Information Model
- Everything is a node

- Variable (e.g. “Water Level”)

- Type of the Variable value (e.g.

Float)

- Nodes are identified by [ns, i]

- NodeID (i=1)

- Namespace ID (ns=0)

- Namespace is a container for nodes

- Namespace 0: default namespace

and contains the default nodes

- Address Space provide a standard way

for servers to represent objects to

clients

OPC-UA Browse
- Service to query the address space

- enables clients to discover the
available data sources and objects
exposed by an OPC-UA server

OPC-UA Encoding
- We need a way to encode the

information model
- OPC-UA defines a set of builtin

types
- Basic types like Int32
- Complex object-like types

like NodeID type
- The specifications define how

each object should be encoded

OPC-UA Encoding
- We need a way to encode the

information model
- OPC-UA defines a set of builtin

types
- Basic types like Int32
- Complex object-like types

like NodeID type
- The specifications define how

each object should be encoded

OPC-UA Encoding
- We need a way to encode everything

- OPC-UA defines a set of builtin types
- Basic types like Int32
- Complex object-like types like NodeID type

OPC-UA Encoding
Specificaitons

OPC-UA Encoding
Specificaitons

Binary

Representation

OPC-UA Encoding
Specificaitons

Binary

Representation

Binary Prasing

OPC-UA Protocol
- HEL: Hello message

- OPN: OpenSecureChannel

message

- MSG: A generic message

container (secured with the

channel’s keys)

- CLO: CloseSecureChannel

message

OPC-UA Protocol
- HEL: Hello message

- OPN: OpenSecureChannel

message

- MSG: A generic message

container (secured with the

channel’s keys)

- CLO: CloseSecureChannel

message

OPC-UA Protocol Read Request

Back to Pwn2Own

Preparing to Pwn2Own
- ~2 months to find 0-

days on ~10 products

- So what’s the plan?

Strategy
- Setup for all targets

- Get the know the target + Underlying OPC-UA Protocol Stacks

- Build client framework for pwnage

- Build fuzzers

- Network based

- Memory/Coverage based

- Closed binary based

- Read the specifications again - find weak spots and a lot of

reverse engineering

- Find vulnerabilities → Pwn

Setup all Targets
- Intel NUC x 2

- Intel® Core™ i7-

1165G7 Processor

- 32 GB RAM

- Install VMware ESXi

- Prepared a Windows 10

x64 Image

- 6 machines/targets per

NUC
Intel NUC

Targets and Protocol Stacks

UA Automation

C++ Server

Softing Integration

Server

Prosys OPC UA SDK

for JAVA

OPC Foundation

OPC UA .NET

Proprietary

+

Proprietary

+

Proprietary

+

KEPServerEx

Proprietary

Client Framework for PWNage
- We wrote our own OPC-

UA client from scratch

- Now it’s easy control

every aspect of the

protocol

- Developed recipes for

different attacks

Fuzzers
- Wrote custom fuzzers

- Network based - using

boofuzz

- Memory/Coverage based -

using AFL, libfuzzer

- Closed binary - using WinAFL,

UnicornAFL (CPU Emulator)

- Monitored everything using Slack

Fuzzers - Network Based
- We have 6 OPCUA targets.

- We want the low hanging

fruits.

- Fuzz each server

separately is hard and not

cost effective.

- We can use Network

Fuzzer

BooFuzz - Network based fuzzer
Pros

- No source code/ compilation needed

- No harness need to be added

- Platform agnostic

Cons

- Not a feedback based fuzzing

- Needs implementation of the rules for

mutation

- Much slower than memory fuzzer

Fuzzers - Network Based

Fuzzers - Coverage Based
- We used libFuzzer

to fuzz the ANSI C

OPCUA stack

- We created large

amount of

corpuses that could

be used later in the

research

Fuzzers - And we have a crash!

Fuzzers - And we have a crash!

Manual Research - Specification + RE
- We returned to the specification and checked for

esoteric features

- What could be badly implemented?

- Intensive RE to verify how it was implemented in each

product

Universal DoS
- Denial of Service

- Uncaught exceptions

- Busy loops

- Threads deadlock

- Bad/uncontrolled memory management

- UAF

Universal DoS - Chunk Flooding
- Support in long OPC-UA msgs

- isFinal Byte

- C: on-going chunk

- F: Final chunk

- A: Final chunk (Abort)

- Logic

- while isFinal != ‘F’:

- Strip header

- Append chunk (+=)

Universal DoS - Chunk Flooding

Universal DoS - Chunk Flooding

As long as the server

did not receive the

Final chunk (F) it will

keep on collecting

the chunks.

Without any

limitation (no count

check on the number

of received chunks)!
OPC-UA

.NET Stack

Universal DoS - Chunk Flooding
- So what happens if we will send many chunks

without the Final flag?

Universal DoS - Chunk Flooding
- So what happens if we will send many chunks

without the Final flag?

Universal DoS - Chunk Flooding
- So what happens if we will send many chunks

without the Final flag?

PTC KEPServerEX

RCE

Tags

WATER_LEVEL

FLOW_LEVEL

IS_VALVE_OPEN

TANK_ID

PTC Kepware RCE - Intro

OPC (Unified Automation) Client Packet capture from Wireshark

TANK_ID Tag

TANK_ID Value

Read/Write values

PTC Kepware RCE - Intro

UTF-8 is capable of encoding all 1,112,064 valid character code points in Unicode

using one to four one-byte (8-bit) code units.

Wikipedia

PTC Kepware RCE - Intro

PTC Kepware RCE - Intro

PTC Kepware RCE - Intro

UTF-16 is a character encoding capable of encoding all 1,112,064 valid code points of

Unicode. The encoding is variable-length, as code points are encoded with one or two

16-bit code units.

Wikipedia

PTC Kepware RCE - Intro

PTC Kepware RCE - Intro

PTC Kepware RCE - The Old Bug

Can be quite complex and prone to

bugs so why not implement by our

selves?

hint: CVE-2020-27263

PTC Kepware RCE - The Old Bug

PTC Kepware RCE - The Old Bug

PTC Kepware RCE - The Old Bug

PTC Kepware RCE - The Old Bug

PTC Kepware RCE - The Old Bug

PTC Kepware RCE - The Old Bug

Until NULL

PTC Kepware RCE - The Old Bug

Get number of code units

PTC Kepware RCE - The Old Bug

Increment the ptr of a UTF8 str accordingly

PTC Kepware RCE - The Old Bug

calculate_UTF16_length(char* utf8_str):

while *utf8_str:

num_code_units = get_utf8_code_units(*utf8_str)

utf8_str += num_code_units

utf16_length += get_utf16_code_units(*utf8_str)

return utf16_length

PTC Kepware RCE - The Old Bug

41 41 41 c3 80 00 41

1 1 1 2

Example - pointer advancement

String: AAAÀ → \x41\x41\x41\xC3\x80\x00

PTC Kepware RCE - The Old Bug

What will happen if we will provide the following char sequence?

41 41 41 c3 80 00 41 41 41 41 c3 00 41

PTC Kepware RCE - The Old Bug

41 41 41 c3 00 41

1 1 1 2

What will happen if we will provide the following char sequence?

Pointer advancement - skip the null

PTC Kepware RCE - The Old Bug

When will the function stop?

- When NULL is encountered while parsing.

What if we provide the following input?

41 41 41 c3 00 41 41 41 41 41 41 41 41 41 41 41 41
41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41
41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41
41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 ...

1 1 1 2 1 …1

Same Bug Here!

PTC Kepware RCE - The Old Bug

ToWide

PTC Kepware RCE - The Old Bug

CVE-2020-27263

The bug was fixed in the

size calculation function

PTC Kepware RCE - The Fix New Bug

PTC Kepware RCE - The New Bug

Until NULL

PTC Kepware RCE - The New Bug

AND while the ptr smaller than strlen(string)

PTC Kepware RCE - The New Bug

Get number of code units

PTC Kepware RCE - The New Bug

Increment the ptr of a UTF8 str accordingly

PTC Kepware RCE - The New Bug

calculate_UTF16_length(char* utf8_str):

utf8_str_end = &utf8_str[strlen(utf8_str) + 1]

while *utf8_str:

num_code_units = get_utf8_code_units(*utf8_str)

utf8_str += num_code_units

if utf8_str > utf8_str_end ; break

utf16_length += get_utf16_code_units(*utf8_str)

return utf16_length

PTC Kepware RCE - The New Bug

When will the function stop?

- When NULL is encountered while parsing.

- And the working PTR is smaller than end of string.

What if we provide the following input?

41 41 41 c3 00 41 41 41 41 41 41 41 41 41 41 41 41
41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41
41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41
41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 ...

1 1 1 2 1 …

PTC Kepware RCE - The New Bug

The BUG wasn’t fixed in ToWide function!

So now we have buffer overflow when the

UTF8→UTF16 conversion is made

PTC Kepware RCE - The New Bug

PTC Kepware RCE - The New Bug

Until NULL

PTC Kepware RCE - The New Bug

Get number of code units

PTC Kepware RCE - The New Bug

Increment the ptr of a UTF8 str accordingly

PTC Kepware RCE - The New Bug

What happens to the the heap now?

PTC Kepware RCE - The New Bug

ToWide

PTC Kepware RCE - The New Bug

We have a heap buffer-overflow with

input (somewhat) controlled by us!

PTC Kepware RCE - OOB Read/Write

- Fortunately the bug is triggered on both READ_TAG

and WRITE_TAG functions

- We have heap OOB (read+write)

- OOB read → leak pointers to defeat ASLR

- OOB write → construct ROP chain, RCE and PWN

PTC Kepware RCE - OOB Read

Leaking data via read tag

PTC Kepware RCE - OOB Write

- We have the pointers to start our ROP chain!

- To construct the ROP chain we need to tweak the

decoding in a way that we will able to control the

whole payload.

UTF8 → UTF16
mspaint → \x00m\x00s\x00p\x00a\x00i\x00n\x00t

ToWide)= mspaint.exe

PTC Kepware RCE - Exploitation

Let’s see how our input should look like
DESIRED_ROP_PAYLOAD → DECODE(UTF16) →

ENCODE(UTF8)

PTC Kepware RCE - ROP

- Building

our ROP

chain…

PTC Kepware RCE

Credit: Uri Katz

Pwn2Own Results

Pwn2Own Results
- Total bugs found: 27

- DoS: 3 targets

- Prosys OPC UA SDK for Java

- OPC Foundation OPC UA .NET

Standard

- Softing Secure Integration Server

- Unified Automation C++

- RCE: 3 targets

- PTC Kepware KEPServerEx

- Iconics Genesis64

- AVEVA Edge

Is That It?

Hunting all OPC-UA Protocol Stacks
- Pwn2Own was a good incentive to study OPC-

UA. Why not helping a bit more?

- OPCUA is a popular protocol, thus many open

source implementations

- Stradegy:

- Use the “problematic” payloads used on

Pwn2Own targets

- Use created corpuses (by AFL and libFuzzer).

Send the payloads and see if there is a crash

Hunting all OPC-UA Protocol Stacks
- Setting up 16 open-source/products with different OPC-

UA protocol stacks

- C, Cpp, .NET, Java, Python, NodeJS, Rust…

- Check for vulnerabilities

- Client framework with our attack payloads

- Use our fuzzing infrastructure + corpuses

- Again.. created setup for each target

Hunting all OPC-UA Protocol Stacks
- It was a long process contacting all the maintainers

(Snyk helped us, thanks!)

Hunting all OPC-UA Protocol Stacks
- But eventually everything

was properly fixed!

- 16 OPC-UA protocols

stacks

- Being used by hundreds

of products

- Being used by millions of

devices/software

Hunting all OPC-UA Protocol Stacks

Summary

Summary

- OPC-UA is a key protocol in the industrial ecosystem

- We helped securing OPC-UA by breaking it

- 27 OPC-UA 0day during pwn2own

- 16 OPC-UA 0days after pwn2own (open-source protocol

stacks)

- Bug bounties and hacking competitions helps to improve

security

So there are no more

OPC-UA bugs, right?

Right..?

Pwn2Own ICS 2023 :)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133

