
2023

Windows 11: The journey to

security by-default

Windows 11: Security Strategy

“Big Rocks”

The road to adminless Windows

Admin by default one of the core issues in Windows

Removing admin has immense security value

Significant OS “debt” with admin

Many win32 apps over privileged

Win32 App Isolation Goals

Make it significantly harder for

attackers to cause big damage

Reduce Developer effort to

onboard apps

Provide frictionless end user

experience for isolated Apps

Containment Developer Simplicity User Transparency

App Container
• Execute application at low IL

• Provide isolation

Helium Silos
• Used by MSIX

• File system & registry virtualization

• Simplify installation & uninstallation

Brokering File System
• Mini-filter driver

• Manage access to user files per App

Win32 App Isolation in Windows 11

Packaging your Existing win32

Packaging your Existing win32 cont.

Application package manifest – before profiling

Problem
Application will lose access to standard user resources once packaged

Files

Registry items

Camera, microphone, location

Solution
Some resources allow access based on capabilities that can be declared by a packaged

application

Find the necessary capabilities

Declare them in the MSIX package manifest

Capability-based access protects resources that are unnecessary to the application package.

Application Capability Profiler (ACP)

Win32 Feature Parity

Implicit Brokering

Manifest Extension Support

FileType Association

ComServers

Modern and Classic Context Menus

Drag & Drop

Printing

Systray Icons/Shell Notifications

Revoke Permissions through settings

Application experience

Win32 Feature Parity Demo

Standard User

Does not have admin rights

Cannot elevate and need intervention

from IT admin, PAM

Protects from malware & user

mistakes

Used by enterprise /w PAM

Admin-less user

Does not have persistent admin rights

and cannot login as admin.

Can elevate by itself with just in time,

non-persistent admin rights.

Uses passwordless strong auth for

secure elevation

Protects from malware but DOES NOT

protects from user mistakes

Used by consumers and enterprises

No Privilege User

Least Privilege User

Defaults to Passwordless auth to improve experience

End-user simply launches the app

• The app elevates with secure passwordless experience

• Least privilege admin is used to secure elevation

• User continues as least privilege after task is completed

Capabilities Coming to Windows

Win32 App Isolation Preview
Releasing at //BUILD 2023

Adminless Windows
Coming in a Future Windows Release

Protecting the platform

App signing not required on

Windows
Comprehensive credential

protection
Security processor fundamentals

Win32 app tries to run

Smart App Control evaluates app and

deems it “safe”

Smart App Control
AI-driven consumer app control stops malware

Windows 11 only runs “safe” apps by
default

• Microsoft has validated it e.g.
Store-signed apps, Drivers

• Microsoft’s cloud AI/ML predicts
app is safe

• It is signed by a certificate in the
Microsoft root program

Untrusted apps, scripts, and file-
based executables, such as malware,
are unable to run

Users can opt-out to desktop mode
and rely on protection solely from
traditional AV

Smart App Control evaluates an unsigned app

but is unable to predict if the app is safe
User downloads app

from internetUser opens unknown

file from email

Smart App Control evaluates app and

identifies it as malicious

Attacker gains access

and writes binary

Secure by Default
and disrupting common attack patterns

S m a r t A p p

C o n t r o l

D e f e n d e r

E X P L O I T

L A U N C H E D !
T H 3 K E N . D L L

App blocked. Full protection day zero. No infections

Partial protection Full protection. No new
infections

B L O C K E D B Y

D E F E N D E R

Hour 0

D e f e n d e r

S i g n a t u r e

u p d a t e d

5k devices infected

Controlled rollout
Maintaining the user’s positive experience

Smart App Control

enabled on clean installs in

evaluation mode

Hardware Features

Download

History

NW Performance

on similar users

Performance

History

Cloud AI model determines if the

user’s device is a good candidate

for enforcement based on app

usage

Smart App Control

enforcement optimized for

users most likely to have a

positive experience

Learning & Personalization Mode Enforcement Mode

Robust Hardware

Firmware renewability

Investments in memory-safe languages

Current protection of credentials is often not adequate
against sophisticated attacks as they are not reliable or
resilient to attacks (i.e. protected by software or
reliability issues or attack vector identified etc.)

Apart from hardening, Pluton provides a reliable
infrastructure for a better user experience

Credentials are safeguarded by Pluton security
processor which is integrated into silicon

Future OS releases will incorporate a new Pluton Key
Storage Provider and integrations planned with Azure
Active Directory and Intune

Windows

11

Pluton Hardware

Applications

Pluton KSP

Pluton

driver

Azure AD

App

Relying Party

User device

SSO state for a user on a device. Long
lived and renewable. Can issue tokens
for any app to any service. (Protected on
registered device)

Native

Primary Refresh Token

(PRT)

Refresh Token (RT)

Access Token (AT)

Web

User Session Cookies

(AAD)

Refresh Token (RT)

Access Token (AT)

Web app auth cookie

Authz token. Specific to app and
resource scope (e.g.,Outlook
client/mail.read)
Short lived, and not renewable.

App sign in state. Specific to app, long
lived and renewable. Can issue
Authorization tokens for specific app to
any service the app and user has
permissions for.

Cookies often set by web applications

containing authenticated user session.

S
ig

n
 I
n

 S
e
ss

io
n

s
A

p
p

 S
e
ss

io
n

s

User device

Identity
provider

App

Relying
Party

Server Logs

4

Breach of server logs1

Attacker controlled
proxy

Malware

2

3

Malicious insider

Attacker controlled
device

Identity
provider

App

Relying
Party

Attacker

5

6

Token Replay

What is Token

Protection?

Token Protection makes resources resistant to access

from devices other than to which the user signed

in

 Resists access to a resource using a session artifact stolen

from a user’s device and replayed from an attacker-

controlled device

 Token is cryptographically bound to a device with a

binding key and cannot be used without the binding key

 Strength of Token protection depends on how the key is

established and how well it’s protected.

Solution

Azure AD Tokens are bound using application proof of
possession

Using Azure AD Conditional Access a customer can:

1. Require sign in sessions to be bound to issue
access tokens (unbound refresh tokens won’t be
accepted)

2. Only issue bound access tokens

3. Require that workload auth session cookies are
bound to device

If access token or workload cookie is bound, resource
validates binding only accepts from the device they are
issued to

Azure AD

Register Device: Including device and
binding root keys

PRT
Registered device

Object – Public keys for
device and binding

User device

Azure AD

App

REQUEST: PRT

RESPONSE: Access token

Access Token

Relying Party

Registered device
object

User device

Token protection for Sign In Sessions

Azure AD

App

REQUEST: PRT + AT PoP

RESPONSE: Access token with cnf claim

PoP AT (SHR)

Relying Party

Registered device
object

User device

CLIENT App: Generates PoP AT (SHR)

Token Protection for Sign In and App

Keyguard and OS support in latest Windows 11
Virtualization based security used to provide secure key storage

Azure AD support in private preview
Broad available for app and sign in sessions in the near futre

Memory safety in Windows

Memory Safe Languages CPU Architectural Changes Safer Language Subset
1 2 3

1

2

Arden White, Christopher Leung, and many others are to thank for this work

Shaping (36 KLOC) + OTLS (18 KLOC)

• Complex script-specific layout: Thai, Indic, Arabic, Hebrew, Hangul, etc.

• Mandatory for complex scripts

• Many are driven by hand-written FSMs

• Complex transformation rules stored in font files (OpenType)

• Transforms sequences of glyphs, e.g. ligatures, connected scripts

Layout (10 KLOC)

• Line layout, justification

• Text run management: bold, italics, font face, underline, etc.

• Font fallback: Most fonts don’t contain all glyphs (e.g. emoji)

Unicode Analysis

(6 KLOC)

• Very large property tables

• Defined by Unicode standard

Glyph Data + Glyph Rendering (24 KLOC)

• Computes vector curves, runs bytecode programs (!!) from font

files to adjust them

• Rasterizes vector curves to bitmaps

• Provides metrics (advance width, x-height, side bearings)

• Scales bitmaps for high-density scripts (e.g. Chinese)

Total ported code ~= 152 KLOC
(some modules not shown).
(Precise counts are
complicated, due to test code.)

All code is 100% safe code,
except at C++ boundary

Not all parts of DWrite are
shown; just those relevant to
port

com::interfaces! {
 #[uuid("9d5d67e0-7bde-4f6d-a073-360c5c381dd6")]
 pub unsafe interface INumberSubstitution : IDWriteNumberSubstitution {
 pub fn GetMode(&self) -> NumberSubstitutionMode;
 pub fn GetChars(&self) -> *const NumberSubstitutionChars;
 pub fn GetScript(&self) -> u32;
 }

}

DWRITE_BEGIN_INTERFACE(INumberSubstitution,
 "9d5d67e0-7bde-4f6d-a073-360c5c381dd6") : IDWriteNumberSubstitution
{
 virtual NumberSubstitutionMode GetMode() const = 0 ;
 virtual NumberSubstitutionChars const& GetChars() const = 0;
 virtual uint32_t GetScript() const = 0;

};

extern "C" IDWriteInlineObject* Rust_Layout_CreateInlineObject(
 IDWriteTextLayout *layout,
 InlineLayoutBoundMode boundMode,
 bool adjustBaseline);

#[no_mangle]
pub extern "C" fn Rust_Layout_CreateInlineObject(
 layout: IDWriteTextLayout,
 bound_mode: InlineLayoutBoundMode,
 adjust_baseline: bool,

) -> IDWriteInlineObject {
 …
}

https://github.com/rust-lang/rust/pull/95051

https://github.com/rust-lang/rust/pull/95051

Driven by community engagement

DWriteCore shipping
Included in Winapp SDK

GDI regions coming soon to insider preview
“Crawl” phase for win32k, prove viability

CPU architecture
CheriIOT, Memory Tagging, and other approaches being investigated for broad memory safety strategy

evolve

challenges

kill legacy attack surface (NTLM, SMBv2)

bug classes is our focus

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5: Adminless
	Slide 6: Win32 App Isolation Goals
	Slide 7: Win32 App Isolation in Windows 11
	Slide 8: Packaging your Existing win32
	Slide 9: Packaging your Existing win32 cont.
	Slide 10: Application package manifest – before profiling
	Slide 11: Application Capability Profiler (ACP)
	Slide 12: Application experience
	Slide 13: Win32 Feature Parity Demo
	Slide 14: Administrator
	Slide 15: Users on Windows Tomorrow
	Slide 16: Adminless approach
	Slide 17: Elevation User Experience
	Slide 18: Adminless
	Slide 19
	Slide 20: Major Platform Issues
	Slide 21
	Slide 22:
	Slide 23
	Slide 24: Pluton Security Processor
	Slide 25: Pluton as a Key Storage Provider
	Slide 26: By design, OAuth artifacts are bearer tokens, meaning they are vulnerable to post-breach token theft and replay.
	Slide 27: Bearer token request
	Slide 28: Authentication artifacts
	Slide 29: Token theft
	Slide 30: Token Replay
	Slide 31: What is Token Protection?
	Slide 32: Solution
	Slide 33: Device Registration
	Slide 34: Token protection for Sign In Sessions
	Slide 35: Token Protection for Sign In and App
	Slide 36: Token Binding
	Slide 37
	Slide 38: Microsoft and Memory Corruption
	Slide 39
	Slide 40
	Slide 41: Rust in Windows: Crawl
	Slide 42: What is DWrite? What is DWriteCore?
	Slide 43: DWrite Internals
	Slide 44: Integrating C++ and Rust
	Slide 45: Performance
	Slide 46: How much time did porting take? Regressions?
	Slide 47: Win32k GDI port to Rust
	Slide 48: Progress so Far
	Slide 49: Progress so far
	Slide 50: Next steps with memory safety
	Slide 51
	Slide 52
	Slide 53: THANKS!!!!

